R. C. Woods Publications

2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 |
|20101999 | 1998 | 1997 | 1996 | 1995 | 1994 | 1993 | 1992 | 1991 |
|19901989 | 1988 | 1987 | 1986 | 1985 | 1984 | 1983 | 1982 | 1981 |
|1980 | 1979 | 1978 | 1977 | 1976 | 1975 | 1974 | 1973 | 1972 | 1971 |
| 1970 | 1969 | 1968 | 1967 | 1966|

79. Cohen, E. A.; Drouin, B. J.; Valenzuela, E. A.; Woods, R. C.; Caminati, W.; Maris, A.; Melandri, S., The rotational spectrum of tertiary-butyl alcohol. J. Mol. Spectrosc. 2010, 260, 77-83. View Article

78. Augustyniak, E.; Chew, K. H.; Shohet, J. L.; Woods, R. C., Atomic absorption spectroscopic measurements of silicon atom concentrations in electron cyclotron resonance silicon oxide deposition plasmas. J. Appl. Phys. 1999, 85, 87-93. View Article

77. Lu, E.; Abraham, I. C.; Yang, Q.; Rasmussen, D.; Woods, R. C.; Anderson, H. M., Effluent monitoring with FTIR spectroscopy for low open area oxide etch endpoint detection. Proc. – Electrochem. Soc. 1998, 98-1, 1250-1261.

76. Pak, Y.; Woods, R. C.; Peterson, K. A., Coupled cluster spectroscopic properties and isomerization pathway for the cyanate/fulminate isomer pair, NCO/CNO. J. Chem. Phys. 1997, 106, 5123-5132. View Article

75. Pak, Y.; Woods, R. C.; Peterson, K. A., Coupled cluster prediction of vibrational band intensities for SiF2 and PF2+. J. Chem. Phys. 1997, 106, 8283-8284. View Article

74. Pak, Y.; Woods, R. C., Anharmonic force fields and spectroscopic properties of BF3 and CF3+ using the coupled cluster method. J. Chem. Phys. 1997, 106, 6424-6429. View Article

73. Pak, Y.; Woods, R. C., Spectroscopic constants and potential energy functions of OCCl+, ONP, ONS+, ArCN+, OCS, and NCCl using the coupled cluster method. J. Chem. Phys. 1997, 107, 5094-5102. View Article

72. Pak, Y.; Sibert, E. L.; Woods, R. C., Coupled cluster anharmonic force fields, spectroscopic constants, and vibrational energies of AlF3 and SiF3+. J. Chem. Phys. 1997, 107, 1717-1724. View Article

71. Pak, Y.; Woods, R. C.; Peterson, K. A., A coupled cluster study of the spectroscopic properties and electric dipole moment functions of nitrous sulfide. J. Chem. Phys. 1996, 104, 7073-7080. View Article

70. Pak, Y.; Woods, R. C., Coupled cluster calculations of the potential energy surfaces and spectroscopic constants of SiF2, PF2+, SO2, PO2, and ClO2+. J. Chem. Phys. 1996, 104, 5547-54. View Article

69. Pak, Y.; Woods, R. C.; Peterson, K. A., A coupled cluster study of the structures, spectroscopic properties, and isomerization path of NCS and CNS. J. Chem. Phys. 1995, 103, 9304-11. View Article

68. Lai, C.; Brunmeier, B.; Woods, R. C., Magnetically confined inductively coupled plasma etching reactor. J. Vac. Sci. Technol., A 1995, 13, 2086-92. View Article

67. Chew, K. H.; Chen, J.; Woods, R. C.; Shohet, J. L., Silicon oxide deposition in an electron cyclotron resonance plasma with microwave spectroscopic monitoring of SiO. J. Vac. Sci. Technol., A 1995, 13, 2483-9. View Article

66. Woods, R. C.; Sudit, I. D., Theory of electron retardation by Langmuir probes in anisotropic plasmas. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 1994, 50, 2222-8. View Article

65. Sudit, I. D.; Woods, R. C., A study of the accuracy of various Langmuir probe theories. J. Appl. Phys. 1994, 76, 4488-98. View Article

64. Sudit, I. D.; Woods, R. C., A workstation based Langmuir probe system for low-pressure d.c. plasmas. Rev. Sci. Instrum. 1993, 64, 2440-8. View Article

63. Lai, C.; Breun, R. A.; Sandstrom, P. W.; Wendt, A. E.; Hershkowitz, N.; Woods, R. C., Langmuir probe measurements of electron temperature and density scaling in multidipole radio frequency plasmas. J. Vac. Sci. Technol., A 1993, 11, 1199-205. View Article

62. Hussein, M. A.; Emmert, G. A.; Hershkowitz, N.; Woods, R. C., Effect of collisions on ion dynamics in electron-cyclotron-resonance plasmas. J. Appl. Phys. 1992, 72, 1720-8. View Article

61. Petrmichl, R. H.; Peterson, K. A.; Woods, R. C., The microwave spectrum of oxophosphorus(1+) (PO+): comparison to fluorosilyliumylidene (SiF+). J. Chem. Phys. 1991, 94, 3504-10. View Article

60. Peterson, K. A.; Woods, R. C., Spectroscopic constants and dipole moment functions of the 22-electron dications silanetetraylneon(2+) (SiNe2+), fluorophosphorus(2+) (PF2+), sulfinyl ion (SO2+), chloronitrogen(2+) (NCl2+), and argon carbide ion(2+) (ArC2+). J. Chem. Phys. 1991, 95, 3528-35. View Article

59. Peterson, K. A.; Petrmichl, R. H.; McClain, R. L.; Woods, R. C., Submillimeter wave spectroscopy of hydroxenon(1+) and hydro-d-xenon(1+) (XeH+ and XeD+). J. Chem. Phys. 1991, 95, 2352-60. View Article

58. Peterson, K. A.; Mayrhofer, R. C.; Woods, R. C., Spectroscopic properties of carbonyl sulfide and chlorooxomethylium (OCS and OCCI+) by Moeller-Plesset perturbation theory and configuration interaction. J. Chem. Phys. 1991, 94, 431-41. View Article

57. Peterson, K. A.; Mayrhofer, R. C.; Sibert, E. L., III; Woods, R. C., Complete active space self-consistent field potential energy surfaces, dipole moment functions, and spectroscopic properties of ozone, difluoromethylene, nitrite, and difluoroaminylium. J. Chem. Phys. 1991, 94, 414-30. View Article

56. Peterson, K. A.; Woods, R. C.; Rosmus, P.; Werner, H. J., Spectroscopic properties of the X1Σ+ and a 3Π electronic states of fluoromethyliumylidene, fluorosilyliumylidene, and chloromethyliumylidene (CF+, SiF+, and CCl+) by multireference configuration interaction. J. Chem. Phys. 1990, 93, 1889-94. View Article

55. Peterson, K. A.; Woods, R. C., Configuration interaction potential energy and dipole moment functions for thirteen 22-electron diatomics. J. Chem. Phys. 1990, 92, 6061-8. View Article

54. Peterson, K. A.; Woods, R. C., An ab initio investigation of the spectroscopic properties of chlorine fluoride, fluoroargon(1+), fluorosulfate(1-), and hypochlorite (CIF, ArF+, SF, and CIO) in their ground electronic states. J. Chem. Phys. 1990, 92, 7412-17. View Article

53. Peterson, K. A.; Woods, R. C., Theoretical dipole moment functions involving the a 3Π and a’ 3Σ+ states of carbon monoxide. J. Chem. Phys. 1990, 93, 5029-36. View Article

52. Peterson, K. A.; Mayrhofer, R. C.; Woods, R. C., Configuration interaction spectroscopic properties of X2Σ+ hydrogen isocyanide ion(1+) (HNC+) and X2Π hydrogen cyanide ion(1+) (HCN+). J. Chem. Phys. 1990, 93, 4946-53. View Article

51. Peterson, K. A.; Mayrhofer, R. C.; Woods, R. C., The potential energy and dipole moment surfaces of nitrogen difluoride and ozonide by complete active space self-consistent field. J. Chem. Phys. 1990, 93, 5020-8. View Article

50. Den Hartog, E. A.; Persing, H.; Woods, R. C., Laser-induced fluorescence measurements of transverse ion temperature in an electron cyclotron resonance plasma. Appl. Phys. Lett. 1990, 57, 661-3. View Article

49. Black, J. H.; Van Dishoeck, E. F.; Willner, S. P.; Woods, R. C., Interstellar absorption lines toward NGC 2264 and AFGL 2591: abundances of hydrogen molecule, hydrogen triatomic ion(+), and carbon monoxide. Astrophys. J. 1990, 358, 459-67. View Article

48. Peterson, K. A.; Woods, R. C., Ground state spectroscopic and thermodynamic properties of aluminate, nitrilosilane ion(1-), methylidynephosphine ion(1-), thioxoborate(1-), oxoborane ion(1-), and cyanide (AlO, SiN, CP, BS, BO, and CN) from Moeller-Plesset perturbation theory. J. Chem. Phys. 1989, 90, 7239-50. View Article

47. Woods, R. C.; Saykally, R. J., A reanalysis of the molecular beam electric resonance Stark effect data for the a 3Π state of carbon monoxide. J. Chem. Phys. 1988, 89, 2781-8. View Article

46. Woods, R. C., Microwave spectroscopy of molecular ions in the laboratory and in space. Philos. Trans. R. Soc. London, A 1988, 324, 141-6. View Article

45. Petrmichl, R. H.; Peterson, K. A.; Woods, R. C., The microwave spectrum of fluorosilyliumylidene (SiF+). J. Chem. Phys. 1988, 89, 5454-9. View Article

44. Peterson, K. A.; Woods, R. C., An investigation of the chlorohydroboron(1+)-chloroborane(1) conjugate acid (HBCl+-BClH+) system by Moeller-Plesset perturbation theory. J. Chem. Phys. 1988, 88, 1074-9. View Article

43. Peterson, K. A.; Woods, R. C., Predictions of the rotational and vibrational spectra of fluorosilyliumylidene, oxophosphorus(1+), and nitrogen sulfide ion(1+) (SiF+, PO+, and NS+) by Moeller-Plesset perturbation theory. J. Chem. Phys. 1988, 89, 4929-44. View Article

42. Carballo, N.; Warner, H. E.; Gudeman, C. S.; Woods, R. C., The microwave spectrum of carbon monoxide in the a 3Π state. II. The submillimeter wave transitions in the normal isotope. J. Chem. Phys. 1988, 88, 7273-86. View Article

41. Woods, R. C., Microwave spectroscopy of molecular ions in the laboratory and in interstellar space. Symp. – Int. Astron. Union 1987, 120, 77-85. View Article

40. Saykally, R. J.; Dixon, T. A.; Anderson, T. G.; Szanto, P. G.; Woods, R. C., The microwave spectrum of carbon monoxide in the a 3Π state. I. The J = 0-1 transitions in CO, 13CO, and C18O. J. Chem. Phys. 1987, 87, 6423-33. View Article

39. Peterson, K. A.; Woods, R. C., An ab initio investigation of the spectroscopic properties of chloroborane(1), carbon sulfide (CS), chloromethyliumylidene (CCl+), fluoroborane(1), carbon monoxide, fluoromethyliumylidene (CF+), molecular nitrogen, cyanide, and nitrosyl ion (NO+). J. Chem. Phys. 1987, 87, 4409-18. View Article

38. Phillips, T. G.; Blake, G. A.; Keene, J.; Woods, R. C.; Churchwell, E., Interstellar hydrogen ion (H3+): possible detection of the 110 → 111 transition of H2D+. Astrophys. J. 1985, 294, L45-L48. View Article

37. Warner, H. E.; Conner, W. T.; Woods, R. C., The lowest rotational transition of several isotopic forms of krypton deuteride(1+) (KrD+). J. Chem. Phys. 1984, 81, 5413-16. View Article

36. Warner, H. E.; Conner, W. T.; Petrmichl, R. H.; Woods, R. C., Laboratory detection of the 110 ← 111 submillimeter wave transition of the hydrogen-deuterium (H2D+) ion. J. Chem. Phys. 1984, 81, 2514. View Article

35. Woods, R. C.; Gudeman, C. S.; Dickman, R. L.; Goldsmith, P. F.; Huguenin, G. R.; Irvine, W. M.; Hjalmarson, A.; Nyman, L. A.; Olofsson, H., The [HCO+]/[HOC+] abundance ratio in molecular clouds. Astrophys. J. 1983, 270, 583-8. View Article

34. Woods, R. C., Microwave spectroscopy of molecular ions. J. Mol. Struct. 1983, 97, 195-202. View Article

33. Woods, R. C., Microwave studies of molecular ions. NATO Adv. Sci. Inst. Ser., Ser. B 1983, 90, 11-16.

32. Woods, R. C., A proposed mechanism for forming some larger molecules in dense interstellar clouds. NATO Adv. Sci. Inst. Ser., Ser. B 1983, 90, 511-15.

31. Woods, R. C. Spectroscopy of molecular ions in the microwave region, In Molecular ions: spectroscopy, structure and chemistry North-Holland: Amsterdam, The Netherlands, 1983; pp 11-47.

30. Piltch, N. D.; Szanto, P. G.; Anderson, T. G.; Gudeman, C. S.; Dixon, T. A.; Woods, R. C., The microwave spectrum of isotopically substituted carbon monoxide(1+) ion. J. Chem. Phys. 1982, 76, 3385-8. View Article

29. Kaushik, V. K.; Woods, R. C., Centrifugal distortion effects in the rotational spectrum of 2-aminoethanol. Z. Phys. Chem. (Wiesbaden) 1982, 132, 117-20. View Article

28. Haese, N. N.; Woods, R. C., Unusually long bonds in CCO+ and COC+. Chem. Phys. Lett. 1982, 91, 190-2. View Article

27. Gudeman, C. S.; Woods, R. C., Experimental detection of HOC+ by microwave spectroscopy. Phys. Rev. Lett. 1982, 48, 1344-8. View Article

26. Woods, R. C.; Saykally, R. J.; Anderson, T. G.; Dixon, T. A.; Szanto, P. G., The molecular structure of HCO+ by the microwave substitution method. J. Chem. Phys. 1981, 75, 4256-60. View Article

25. Woods, R. C., Structures of molecular ions from microwave spectroscopy. Ann. Isr. Phys. Soc. 1981, 4, 221-7. View Article

24. Woods, R. C., Microwave spectroscopy of molecular ions and other transient species in electric discharges. Faraday Discuss. Chem. Soc. 1981, 71, 57-62. View Article

23. Szanto, P. G.; Anderson, T. G.; Saykally, R. J.; Piltch, N. D.; Dixon, T. A.; Woods, R. C., A microwave substitution structure for protonated nitrogen N2H+. J. Chem. Phys. 1981, 75, 4261-3. View Article

22. Saykally, R. J.; Woods, R. C., High resolution spectroscopy of molecular ions. Annu. Rev. Phys. Chem. 1981, 32, 403-31. View Article

21. Haese, N. N.; Woods, R. C., On the possible selective formation of CNC+ and CCN+ in the interstellar reactions of carbon(1+) ion with hydrogen cyanide and hydrogen isocyanide. Astrophys. J. 1981, 246, L51-L55. View Article

20. Gudeman, C. S.; Haese, N. N.; Piltch, N. D.; Woods, R. C., The observation of the J = 1-2 transition of HCS+ in a laboratory glow discharge. Astrophys. J. 1981, 246, L47-L49. View Article

19. Haese, N. N.; Woods, R. C., Theoretical molecular structures and electric dipole moments of cyanoacetylene isomers CCCNH and HCCNC, protonated cyanoacetylene cyanogen, and protonated cyanogen. J. Chem. Phys. 1980, 73, 4521-7. View Article

18. Anderson, T. G.; Gudeman, C. S.; Dixon, T. A.; Woods, R. C., Pressure broadening of the oxomethylium ion J = 0-1 transition by hydrogen. J. Chem. Phys. 1980, 72, 1332-6. View Article

17. Haese, N. N.; Woods, R. C., Configuration interaction electric dipole moments for HCN, HNC, HNN+, HCO+, HBO, HBF+, and HCNH+. Chem. Phys. Lett. 1979, 61, 396-8. View Article

16. Dixon, T. A.; Woods, R. C., The laboratory microwave spectrum of the cyanide radical in its X2Σ+ ground state. J. Chem. Phys. 1977, 67, 3956-64. View Article

15. Anderson, T. G.; Dixon, T. A.; Piltch, N. D.; Saykally, R. J.; Szanto, P. G.; Woods, R. C., Laboratory rest frequencies for N2D+. Astrophys. J. 1977, 216, L85-L86. View Article

14. Woods, R. C.; Dixon, T. A., Comment on the quadrupole coupling constants in the A2Σ+ states of hydroxyl-d and nitric oxide. J. Chem. Phys. 1976, 64, 5319-20. View Article

13. Saykally, R. J.; Szanto, P. G.; Anderson, T. G.; Woods, R. C., The microwave spectrum of hydrogen isocyanide. Astrophys. J. 1976, 204, L143-L145. View Article

12.Saykally, R. J.; Dixon, T. A.; Anderson, T. G.; Szanto, P. G.; Woods, R. C., Laboratory microwave spectrum and rest frequencies of the hydrodinitrogen(+) ion. Astrophys. J. 1976, 205, L101-L103. View Article

11. Woods, R. C.; Dixon, T. A.; Saykally, R. J.; Szanto, P. G., Laboratory microwave spectrum of formyl(+) ion. Phys. Rev. Lett. 1975, 35, 1269-72. View Article

10. Dixon, T. A.; Woods, R. C., Microwave absorption spectrum of the carbon monoxide(+) ion. Phys. Rev. Lett. 1975, 34, 61-3. View Article

9. Woods, R. C.; Dixon, T. A., Computer controlled microwave spectrometer system. Rev. Sci. Instrum. 1974, 45, 1122-6. View Article

8. Valenzuela, E. A.; Woods, R. C., Microwave spectrum of tert-butyl mercaptan. J. Chem. Phys. 1974, 61, 4119-28. View Article

7. Woods, R. C., Field spinning Zeeman modulation in microwave spectroscopy with cosine distribution magnets. Rev. Sci. Instrum. 1973, 44, 274-81. View Article

6. Woods, R. C., Microwave spectrometer with an internal glow discharge. Rev. Sci. Instrum. 1973, 44, 282-8. View Article

5. Certain, P. R.; Woods, R. C., Dipole moment of the carbon monoxide(+) ion. J. Chem. Phys. 1973, 58, 5837-8. View Article

4. Woods, R. C., A general program for the calculation of internal rotation splittings in microwave spectroscopy. II. The n-top problem. J. Mol. Spectrosc. 1967, 22, 49-59. View Article

3. Woods, R. C., A general program for the calculation of internal rotation splittings in microwave spectroscopy. J. Mol. Spectrosc. 1966, 21, 4-24. View Article

2. Ronn, A. M.; Woods, R. C., Microwave spectrum of pivalaldehyde. J. Chem. Phys. 1966, 45, 3831. View Article

1. Woods, R. C. Internal rotation and the microwave spectrum of fluoral. Ph.D. Dissertation, Harvard University, Cambridge, Massachusetts, 1965. View Dissertation