2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 |
|2010 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994 | 1993 | 1992 | 1991 |
|1990 | 1989 | 1988 | 1987 | 1986 | 1985 | 1984 | 1983 | 1982 | 1981 |
|1980 | 1979 | 1978 | 1977 | 1976 | 1975 | 1974 | 1973 | 1972 | 1971 |
| 1970 | 1969 | 1968 | 1967 | 1966|
79. Cohen, E. A.; Drouin, B. J.; Valenzuela, E. A.; Woods, R. C.; Caminati, W.; Maris, A.; Melandri, S., The rotational spectrum of tertiary-butyl alcohol. J. Mol. Spectrosc. 2010, 260, 77-83. View Article
78. Augustyniak, E.; Chew, K. H.; Shohet, J. L.; Woods, R. C., Atomic absorption spectroscopic measurements of silicon atom concentrations in electron cyclotron resonance silicon oxide deposition plasmas. J. Appl. Phys. 1999, 85, 87-93. View Article
77. Lu, E.; Abraham, I. C.; Yang, Q.; Rasmussen, D.; Woods, R. C.; Anderson, H. M., Effluent monitoring with FTIR spectroscopy for low open area oxide etch endpoint detection. Proc. – Electrochem. Soc. 1998, 98-1, 1250-1261.
76. Pak, Y.; Woods, R. C.; Peterson, K. A., Coupled cluster spectroscopic properties and isomerization pathway for the cyanate/fulminate isomer pair, NCO–/CNO. J. Chem. Phys. 1997, 106, 5123-5132. View Article
75. Pak, Y.; Woods, R. C.; Peterson, K. A., Coupled cluster prediction of vibrational band intensities for SiF2 and PF2+. J. Chem. Phys. 1997, 106, 8283-8284. View Article
74. Pak, Y.; Woods, R. C., Anharmonic force fields and spectroscopic properties of BF3 and CF3+ using the coupled cluster method. J. Chem. Phys. 1997, 106, 6424-6429. View Article
73. Pak, Y.; Woods, R. C., Spectroscopic constants and potential energy functions of OCCl+, ONP, ONS+, ArCN+, OCS, and NCCl using the coupled cluster method. J. Chem. Phys. 1997, 107, 5094-5102. View Article
72. Pak, Y.; Sibert, E. L.; Woods, R. C., Coupled cluster anharmonic force fields, spectroscopic constants, and vibrational energies of AlF3 and SiF3+. J. Chem. Phys. 1997, 107, 1717-1724. View Article
71. Pak, Y.; Woods, R. C.; Peterson, K. A., A coupled cluster study of the spectroscopic properties and electric dipole moment functions of nitrous sulfide. J. Chem. Phys. 1996, 104, 7073-7080. View Article
70. Pak, Y.; Woods, R. C., Coupled cluster calculations of the potential energy surfaces and spectroscopic constants of SiF2, PF2+, SO2, PO2–, and ClO2+. J. Chem. Phys. 1996, 104, 5547-54. View Article
69. Pak, Y.; Woods, R. C.; Peterson, K. A., A coupled cluster study of the structures, spectroscopic properties, and isomerization path of NCS– and CNS. J. Chem. Phys. 1995, 103, 9304-11. View Article
68. Lai, C.; Brunmeier, B.; Woods, R. C., Magnetically confined inductively coupled plasma etching reactor. J. Vac. Sci. Technol., A 1995, 13, 2086-92. View Article
67. Chew, K. H.; Chen, J.; Woods, R. C.; Shohet, J. L., Silicon oxide deposition in an electron cyclotron resonance plasma with microwave spectroscopic monitoring of SiO. J. Vac. Sci. Technol., A 1995, 13, 2483-9. View Article
66. Woods, R. C.; Sudit, I. D., Theory of electron retardation by Langmuir probes in anisotropic plasmas. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 1994, 50, 2222-8. View Article
65. Sudit, I. D.; Woods, R. C., A study of the accuracy of various Langmuir probe theories. J. Appl. Phys. 1994, 76, 4488-98. View Article
64. Sudit, I. D.; Woods, R. C., A workstation based Langmuir probe system for low-pressure d.c. plasmas. Rev. Sci. Instrum. 1993, 64, 2440-8. View Article
63. Lai, C.; Breun, R. A.; Sandstrom, P. W.; Wendt, A. E.; Hershkowitz, N.; Woods, R. C., Langmuir probe measurements of electron temperature and density scaling in multidipole radio frequency plasmas. J. Vac. Sci. Technol., A 1993, 11, 1199-205. View Article
62. Hussein, M. A.; Emmert, G. A.; Hershkowitz, N.; Woods, R. C., Effect of collisions on ion dynamics in electron-cyclotron-resonance plasmas. J. Appl. Phys. 1992, 72, 1720-8. View Article
61. Petrmichl, R. H.; Peterson, K. A.; Woods, R. C., The microwave spectrum of oxophosphorus(1+) (PO+): comparison to fluorosilyliumylidene (SiF+). J. Chem. Phys. 1991, 94, 3504-10. View Article
60. Peterson, K. A.; Woods, R. C., Spectroscopic constants and dipole moment functions of the 22-electron dications silanetetraylneon(2+) (SiNe2+), fluorophosphorus(2+) (PF2+), sulfinyl ion (SO2+), chloronitrogen(2+) (NCl2+), and argon carbide ion(2+) (ArC2+). J. Chem. Phys. 1991, 95, 3528-35. View Article
59. Peterson, K. A.; Petrmichl, R. H.; McClain, R. L.; Woods, R. C., Submillimeter wave spectroscopy of hydroxenon(1+) and hydro-d-xenon(1+) (XeH+ and XeD+). J. Chem. Phys. 1991, 95, 2352-60. View Article
58. Peterson, K. A.; Mayrhofer, R. C.; Woods, R. C., Spectroscopic properties of carbonyl sulfide and chlorooxomethylium (OCS and OCCI+) by Moeller-Plesset perturbation theory and configuration interaction. J. Chem. Phys. 1991, 94, 431-41. View Article
57. Peterson, K. A.; Mayrhofer, R. C.; Sibert, E. L., III; Woods, R. C., Complete active space self-consistent field potential energy surfaces, dipole moment functions, and spectroscopic properties of ozone, difluoromethylene, nitrite, and difluoroaminylium. J. Chem. Phys. 1991, 94, 414-30. View Article
56. Peterson, K. A.; Woods, R. C.; Rosmus, P.; Werner, H. J., Spectroscopic properties of the X1Σ+ and a 3Π electronic states of fluoromethyliumylidene, fluorosilyliumylidene, and chloromethyliumylidene (CF+, SiF+, and CCl+) by multireference configuration interaction. J. Chem. Phys. 1990, 93, 1889-94. View Article
55. Peterson, K. A.; Woods, R. C., Configuration interaction potential energy and dipole moment functions for thirteen 22-electron diatomics. J. Chem. Phys. 1990, 92, 6061-8. View Article
54. Peterson, K. A.; Woods, R. C., An ab initio investigation of the spectroscopic properties of chlorine fluoride, fluoroargon(1+), fluorosulfate(1-), and hypochlorite (CIF, ArF+, SF–, and CIO–) in their ground electronic states. J. Chem. Phys. 1990, 92, 7412-17. View Article
53. Peterson, K. A.; Woods, R. C., Theoretical dipole moment functions involving the a 3Π and a’ 3Σ+ states of carbon monoxide. J. Chem. Phys. 1990, 93, 5029-36. View Article
52. Peterson, K. A.; Mayrhofer, R. C.; Woods, R. C., Configuration interaction spectroscopic properties of X2Σ+ hydrogen isocyanide ion(1+) (HNC+) and X2Π hydrogen cyanide ion(1+) (HCN+). J. Chem. Phys. 1990, 93, 4946-53. View Article
51. Peterson, K. A.; Mayrhofer, R. C.; Woods, R. C., The potential energy and dipole moment surfaces of nitrogen difluoride and ozonide by complete active space self-consistent field. J. Chem. Phys. 1990, 93, 5020-8. View Article
50. Den Hartog, E. A.; Persing, H.; Woods, R. C., Laser-induced fluorescence measurements of transverse ion temperature in an electron cyclotron resonance plasma. Appl. Phys. Lett. 1990, 57, 661-3. View Article
49. Black, J. H.; Van Dishoeck, E. F.; Willner, S. P.; Woods, R. C., Interstellar absorption lines toward NGC 2264 and AFGL 2591: abundances of hydrogen molecule, hydrogen triatomic ion(+), and carbon monoxide. Astrophys. J. 1990, 358, 459-67. View Article
48. Peterson, K. A.; Woods, R. C., Ground state spectroscopic and thermodynamic properties of aluminate, nitrilosilane ion(1-), methylidynephosphine ion(1-), thioxoborate(1-), oxoborane ion(1-), and cyanide (AlO–, SiN–, CP–, BS–, BO–, and CN–) from Moeller-Plesset perturbation theory. J. Chem. Phys. 1989, 90, 7239-50. View Article
47. Woods, R. C.; Saykally, R. J., A reanalysis of the molecular beam electric resonance Stark effect data for the a 3Π state of carbon monoxide. J. Chem. Phys. 1988, 89, 2781-8. View Article
46. Woods, R. C., Microwave spectroscopy of molecular ions in the laboratory and in space. Philos. Trans. R. Soc. London, A 1988, 324, 141-6. View Article
45. Petrmichl, R. H.; Peterson, K. A.; Woods, R. C., The microwave spectrum of fluorosilyliumylidene (SiF+). J. Chem. Phys. 1988, 89, 5454-9. View Article
44. Peterson, K. A.; Woods, R. C., An investigation of the chlorohydroboron(1+)-chloroborane(1) conjugate acid (HBCl+-BClH+) system by Moeller-Plesset perturbation theory. J. Chem. Phys. 1988, 88, 1074-9. View Article
43. Peterson, K. A.; Woods, R. C., Predictions of the rotational and vibrational spectra of fluorosilyliumylidene, oxophosphorus(1+), and nitrogen sulfide ion(1+) (SiF+, PO+, and NS+) by Moeller-Plesset perturbation theory. J. Chem. Phys. 1988, 89, 4929-44. View Article
42. Carballo, N.; Warner, H. E.; Gudeman, C. S.; Woods, R. C., The microwave spectrum of carbon monoxide in the a 3Π state. II. The submillimeter wave transitions in the normal isotope. J. Chem. Phys. 1988, 88, 7273-86. View Article
41. Woods, R. C., Microwave spectroscopy of molecular ions in the laboratory and in interstellar space. Symp. – Int. Astron. Union 1987, 120, 77-85. View Article
40. Saykally, R. J.; Dixon, T. A.; Anderson, T. G.; Szanto, P. G.; Woods, R. C., The microwave spectrum of carbon monoxide in the a 3Π state. I. The J = 0-1 transitions in CO, 13CO, and C18O. J. Chem. Phys. 1987, 87, 6423-33. View Article
39. Peterson, K. A.; Woods, R. C., An ab initio investigation of the spectroscopic properties of chloroborane(1), carbon sulfide (CS), chloromethyliumylidene (CCl+), fluoroborane(1), carbon monoxide, fluoromethyliumylidene (CF+), molecular nitrogen, cyanide, and nitrosyl ion (NO+). J. Chem. Phys. 1987, 87, 4409-18. View Article
38. Phillips, T. G.; Blake, G. A.; Keene, J.; Woods, R. C.; Churchwell, E., Interstellar hydrogen ion (H3+): possible detection of the 110 → 111 transition of H2D+. Astrophys. J. 1985, 294, L45-L48. View Article
37. Warner, H. E.; Conner, W. T.; Woods, R. C., The lowest rotational transition of several isotopic forms of krypton deuteride(1+) (KrD+). J. Chem. Phys. 1984, 81, 5413-16. View Article
36. Warner, H. E.; Conner, W. T.; Petrmichl, R. H.; Woods, R. C., Laboratory detection of the 110 ← 111 submillimeter wave transition of the hydrogen-deuterium (H2D+) ion. J. Chem. Phys. 1984, 81, 2514. View Article
35. Woods, R. C.; Gudeman, C. S.; Dickman, R. L.; Goldsmith, P. F.; Huguenin, G. R.; Irvine, W. M.; Hjalmarson, A.; Nyman, L. A.; Olofsson, H., The [HCO+]/[HOC+] abundance ratio in molecular clouds. Astrophys. J. 1983, 270, 583-8. View Article
34. Woods, R. C., Microwave spectroscopy of molecular ions. J. Mol. Struct. 1983, 97, 195-202. View Article
33. Woods, R. C., Microwave studies of molecular ions. NATO Adv. Sci. Inst. Ser., Ser. B 1983, 90, 11-16.
32. Woods, R. C., A proposed mechanism for forming some larger molecules in dense interstellar clouds. NATO Adv. Sci. Inst. Ser., Ser. B 1983, 90, 511-15.
31. Woods, R. C. Spectroscopy of molecular ions in the microwave region, In Molecular ions: spectroscopy, structure and chemistry North-Holland: Amsterdam, The Netherlands, 1983; pp 11-47.
30. Piltch, N. D.; Szanto, P. G.; Anderson, T. G.; Gudeman, C. S.; Dixon, T. A.; Woods, R. C., The microwave spectrum of isotopically substituted carbon monoxide(1+) ion. J. Chem. Phys. 1982, 76, 3385-8. View Article
29. Kaushik, V. K.; Woods, R. C., Centrifugal distortion effects in the rotational spectrum of 2-aminoethanol. Z. Phys. Chem. (Wiesbaden) 1982, 132, 117-20. View Article
28. Haese, N. N.; Woods, R. C., Unusually long bonds in CCO+ and COC+. Chem. Phys. Lett. 1982, 91, 190-2. View Article
27. Gudeman, C. S.; Woods, R. C., Experimental detection of HOC+ by microwave spectroscopy. Phys. Rev. Lett. 1982, 48, 1344-8. View Article
26. Woods, R. C.; Saykally, R. J.; Anderson, T. G.; Dixon, T. A.; Szanto, P. G., The molecular structure of HCO+ by the microwave substitution method. J. Chem. Phys. 1981, 75, 4256-60. View Article
25. Woods, R. C., Structures of molecular ions from microwave spectroscopy. Ann. Isr. Phys. Soc. 1981, 4, 221-7. View Article
24. Woods, R. C., Microwave spectroscopy of molecular ions and other transient species in electric discharges. Faraday Discuss. Chem. Soc. 1981, 71, 57-62. View Article
23. Szanto, P. G.; Anderson, T. G.; Saykally, R. J.; Piltch, N. D.; Dixon, T. A.; Woods, R. C., A microwave substitution structure for protonated nitrogen N2H+. J. Chem. Phys. 1981, 75, 4261-3. View Article
22. Saykally, R. J.; Woods, R. C., High resolution spectroscopy of molecular ions. Annu. Rev. Phys. Chem. 1981, 32, 403-31. View Article
21. Haese, N. N.; Woods, R. C., On the possible selective formation of CNC+ and CCN+ in the interstellar reactions of carbon(1+) ion with hydrogen cyanide and hydrogen isocyanide. Astrophys. J. 1981, 246, L51-L55. View Article
20. Gudeman, C. S.; Haese, N. N.; Piltch, N. D.; Woods, R. C., The observation of the J = 1-2 transition of HCS+ in a laboratory glow discharge. Astrophys. J. 1981, 246, L47-L49. View Article
19. Haese, N. N.; Woods, R. C., Theoretical molecular structures and electric dipole moments of cyanoacetylene isomers CCCNH and HCCNC, protonated cyanoacetylene cyanogen, and protonated cyanogen. J. Chem. Phys. 1980, 73, 4521-7. View Article
18. Anderson, T. G.; Gudeman, C. S.; Dixon, T. A.; Woods, R. C., Pressure broadening of the oxomethylium ion J = 0-1 transition by hydrogen. J. Chem. Phys. 1980, 72, 1332-6. View Article
17. Haese, N. N.; Woods, R. C., Configuration interaction electric dipole moments for HCN, HNC, HNN+, HCO+, HBO, HBF+, and HCNH+. Chem. Phys. Lett. 1979, 61, 396-8. View Article
16. Dixon, T. A.; Woods, R. C., The laboratory microwave spectrum of the cyanide radical in its X2Σ+ ground state. J. Chem. Phys. 1977, 67, 3956-64. View Article
15. Anderson, T. G.; Dixon, T. A.; Piltch, N. D.; Saykally, R. J.; Szanto, P. G.; Woods, R. C., Laboratory rest frequencies for N2D+. Astrophys. J. 1977, 216, L85-L86. View Article
14. Woods, R. C.; Dixon, T. A., Comment on the quadrupole coupling constants in the A2Σ+ states of hydroxyl-d and nitric oxide. J. Chem. Phys. 1976, 64, 5319-20. View Article
13. Saykally, R. J.; Szanto, P. G.; Anderson, T. G.; Woods, R. C., The microwave spectrum of hydrogen isocyanide. Astrophys. J. 1976, 204, L143-L145. View Article
12.Saykally, R. J.; Dixon, T. A.; Anderson, T. G.; Szanto, P. G.; Woods, R. C., Laboratory microwave spectrum and rest frequencies of the hydrodinitrogen(+) ion. Astrophys. J. 1976, 205, L101-L103. View Article
11. Woods, R. C.; Dixon, T. A.; Saykally, R. J.; Szanto, P. G., Laboratory microwave spectrum of formyl(+) ion. Phys. Rev. Lett. 1975, 35, 1269-72. View Article
10. Dixon, T. A.; Woods, R. C., Microwave absorption spectrum of the carbon monoxide(+) ion. Phys. Rev. Lett. 1975, 34, 61-3. View Article
9. Woods, R. C.; Dixon, T. A., Computer controlled microwave spectrometer system. Rev. Sci. Instrum. 1974, 45, 1122-6. View Article
8. Valenzuela, E. A.; Woods, R. C., Microwave spectrum of tert-butyl mercaptan. J. Chem. Phys. 1974, 61, 4119-28. View Article
7. Woods, R. C., Field spinning Zeeman modulation in microwave spectroscopy with cosine distribution magnets. Rev. Sci. Instrum. 1973, 44, 274-81. View Article
6. Woods, R. C., Microwave spectrometer with an internal glow discharge. Rev. Sci. Instrum. 1973, 44, 282-8. View Article
5. Certain, P. R.; Woods, R. C., Dipole moment of the carbon monoxide(+) ion. J. Chem. Phys. 1973, 58, 5837-8. View Article
4. Woods, R. C., A general program for the calculation of internal rotation splittings in microwave spectroscopy. II. The n-top problem. J. Mol. Spectrosc. 1967, 22, 49-59. View Article
3. Woods, R. C., A general program for the calculation of internal rotation splittings in microwave spectroscopy. J. Mol. Spectrosc. 1966, 21, 4-24. View Article
2. Ronn, A. M.; Woods, R. C., Microwave spectrum of pivalaldehyde. J. Chem. Phys. 1966, 45, 3831. View Article
1. Woods, R. C. Internal rotation and the microwave spectrum of fluoral. Ph.D. Dissertation, Harvard University, Cambridge, Massachusetts, 1965. View Dissertation